1944. La entropía y la flecha del tiempo (Erwin Schrödinger)


A medida que las experiencias con las transformaciones energéticas se fueron condensando en las leyes fundamentales de la termodinámica, una visión apocalíptica del Universo se presentaba a los ojos de la ciencia. La entropía funcionaba como una suerte de cuenta regresiva. Dado que todos los procesos llevan inevitablemente a la disipación de gradientes, tarde o temprano éstos desaparecerían. Entonces, cuando ya no hubiera desniveles ni gradientes ni heterogeneidades, ni ocurriera ningún proceso neto, el sistema alcanzaría un equilibrio. La uniformidad reemplazaría a las formas. Toda la energía útil se habría disipado. La entropía habría alcanzado un máximo y entonces el tiempo se habría detenido, ya que en el estado de equilibrio, y sin variaciones en la entropía, el tiempo dejaría de fluir. En el tiempo en el que los físicos concebían un Universo en el que todos los sistemas estaban envejeciendo, los biólogos mostraban que la evolución de la materia viva podría interpretarse por una flecha que parecía desplazarse en el sentido inverso. Los biólogos presentaron la historia de la vida proponiendo que la materia se había ido autoorganizando espontánea y progresivamente, primero formando células simples, luego organismos pluricelulares en los que más tarde las células se especializaron y formaron organismos más sofisticados y complejos. Para los físicos de la época quedaba claramente establecida la controversia. La probabilidad de que moléculas de mayor o menor complejidad se hayan asociado en forma espontánea para formar estructuras tan complejas como una célula, además de la cuantiosa y paulatina ganancia de información por parte de los sistemas vivos, estaba en franca discrepancia con los principios establecidos por la termodinámica. Fue así que los físicos de la época restringieron la aplicación de las leyes de la termodinámica al comportamiento de los sistemas materiales inanimados. Sin embargo, a mediados del siglo XX, Erwin Schrödinger (1887-1961), una figura capital de la ciencia de esa época, aportó la solución a este problema que parecía insalvable. En un pequeño libro titulado ¿Qué es la vida?, publicado en 1944, Schrödinger intentó agrupar conceptos fundamentales de la física, la química y la biología. Hizo notar que en los organismos vivos conviven dos procesos esenciales: la generación de orden a partir de orden y la generación de orden a partir de desorden. Con “orden a partir de orden” Schrödinger intenta explicar la capacidad de los organismos de producir réplicas de sí mismos e incluso de generar variaciones heredables. Schrödinger creía que el gran orden que reina en la materia viva estaba regido por información almacenada en un “microcódigo”. Suponía que algún tipo de cristal aperiódico era el sustrato físico que permitía almacenar esa información y sobre el que podían tallarse las pequeñas variaciones que posteriormente resultarían heredables. Una década más tarde, Watson y Crick describieron la estructura del DNA, una macromolécula que reúne muchas de las condiciones anticipadas por Schrödinger, necesarias para almacenar la información genética. La otra idea de Schrödinger, “orden a partir de desorden”, aunque igualmente anticipadora, no fue bien comprendida. Schrödinger se basó en la observación para entonces irrefutable de que los sistemas vivos están alejados del equilibrio. Schrödinger reconoció que los sistemas vivos son constantemente atravesados por flujos de materia y energía. Por lo tanto, concluyó que para comprender los balances energéticos que existen en estos sistemas abiertos se debe considerar un sistema más amplio: el sistema biológico debe considerarse junto con su entorno. Un sistema biológico se mantiene vivo en su estado organizado tomando energía del ambiente y procesándola a través de su eficiente maquinaria química. Ésta acopla las sucesivas transformaciones energéticas a la producción de trabajo útil, lo que le permite ejercer las diferentes funciones celulares y así mantener su organización interna. Durante estos procesos, las células devuelven a su entorno energía disipada que consiste en calor y otras formas que rápidamente se distribuyen en el ambiente aumentando su desorden y entropía. Así, los organismos vivos ganan orden interno a expensas de generar desorden en su ambiente. La nueva perspectiva del no equilibrio propuesta por Schrödinger reconcilió en parte la autoorganización biológica con la termodinámica. Quienes intentaban estudiar los organismos vivos desde un punto de vista fisicoquímico adecuaron los modelos biológicos a modelos de sistemas en estado estacionario. Mientras que un sistema en equilibrio mantiene su constancia por la ausencia de procesos, un sistema estacionario se mantiene porque existen procesos balanceados. Los conceptos formulados sirven para explicar cómo un sistema ordenado, dotado de información, se sostiene en el tiempo, pero no dicen mucho acerca de cómo estas estructuras pudieron aparecer por primera vez y evolucionar. Las intuiciones iniciales de Schrödinger que llevaron a buscar respuesta a los problemas biológicos en sistemas alejados de los equilibrios una vez más resultaron correctas.

Véase también: cap. 4